Proceedings

The Fourth International Conference on Internet and Web Applications and Services
ICIW 2009

24-28 May 2009
Venice/Mestre, Italy

Editors
Hideyasu Sasaki
Matthias Ehmann
Guadalupe Ortiz Bellot
Oana Dini

Los Alamitos, California
Washington • Tokyo
2009 Fourth International Conference on Internet and Web Applications and Services

ICIW 2009

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiv</td>
</tr>
<tr>
<td>Program Committee</td>
<td>xv</td>
</tr>
<tr>
<td>Reviewers</td>
<td>xx</td>
</tr>
<tr>
<td>ICIW 1: ONLINE I</td>
<td></td>
</tr>
<tr>
<td>A Navigation over XML Documents through Linear Algebra Tools</td>
<td>1</td>
</tr>
<tr>
<td>Adriana Georgieva and Bozhidar Georgiev</td>
<td></td>
</tr>
<tr>
<td>Creativity Techniques for Collocated Teams Using a Web-Based Virtual Whiteboard</td>
<td>7</td>
</tr>
<tr>
<td>Florian Forster and Harald Wartig</td>
<td></td>
</tr>
<tr>
<td>TeamCom: A Service Creation Platform for Next Generation Networks</td>
<td>12</td>
</tr>
<tr>
<td>A. Lehmann, T. Eichelmann, U. Trick, R. Lasch, B. Ricks, and R. Törnjes</td>
<td></td>
</tr>
<tr>
<td>SynCFr: Synchronization Collaboration Framework</td>
<td>18</td>
</tr>
<tr>
<td>L. Ardissono, A. Goy, G. Petrone, and M. Segnan</td>
<td></td>
</tr>
<tr>
<td>ICIW 2: WSSA I</td>
<td></td>
</tr>
<tr>
<td>Enterprise Architecture and Web Services</td>
<td>24</td>
</tr>
<tr>
<td>Dinarle Ortega, Elluz Uzcátegui, and María M. Guevara</td>
<td></td>
</tr>
<tr>
<td>A Formal Description of Web Services Container Architecture</td>
<td>30</td>
</tr>
<tr>
<td>Jian Liu, Dianfu Ma, Zhuqing Li, and Dou Sun</td>
<td></td>
</tr>
<tr>
<td>Realizing Event-Driven SOA</td>
<td>37</td>
</tr>
<tr>
<td>Olga Levina and Vladimir Stantchev</td>
<td></td>
</tr>
<tr>
<td>Data Flow Repair in Web Service Orchestration at Runtime</td>
<td>43</td>
</tr>
<tr>
<td>Aurélien Moreau, Jacques Malenfant, and Michel Dao</td>
<td></td>
</tr>
</tbody>
</table>
ICIW 3: P2PSA I
Paircoding: Improving File Sharing Using Sparse Network Codes ...49
 Christian Ortolf, Christian Schindelhauer, and Arne Vater
QoSMap: Achieving Quality and Resilience through Overlay Construction58
 Jawwad Shamsi and Monica Brockmeyer
Nearby Neighbor Selection in P2P Systems to Localize Traffic ..68
 Lijie Sheng and Haoyu Wen
Broadcasting in Prefix Space: P2P Data Dissemination with Predictable Performance74
 Matthias Wählisch, Thomas C. Schmidt, and Georg Wittenburg

ICIW 4: P2PSA II
Impact of Self-Organization in P2P Overlays on Underlay Utilization ..84
 Konstantin Pussep, Simon Oechsner, Osama Abboud, Miroslaw Kantor, and Burkhard Stiller
A P2P Collaborative Bibliography Recommender System ...90
 Rushed Kanawati and Hager Karoui
DeLight: A Peer-to-Peer Storage and Processing System ...97
 Marte Karidatter Skadsem, Njål T. Borch, and Randi Karlsen
Towards Interoperability in P2P World: An Indexing Middleware for Multi-protocol Peer-to-Peer Data Sharing ..102
 Evandro S. Rezende, Evgueni Dodonov, Roberta S. Ulson, Marcos A. Cavenaghi, and Renata S. Lobato

ICIW 5: IWAS I
Designing an Online Part-Time Master of Philosophy with Problem Oriented Engineering106
 Lucia Rapanotti and Jon G. Hall
Open Mobile Platforms: Modeling the Long-Tail of Application Usage112
 Hannu Verkasalo
Visualization and Dependency Analysis for Linkage Structures in Web Applications119
 Chengying Mao
Personalized News Search in WWW: Adapting on User’s Behavior ...125
 Christos Bouras, Vassilis Poulopoulos, and Panagiotis Silintziris

ICIW 6: IWAS II
A RESTful Approach to the OGSA Basic Execution Service Specification131
 Sergio Andreozzi and Moreno Marzolla
Data Integration for the Gulf of Mexico Satellite Observations ...137
 Longzhuang Li, Yonghuai Liu, Srujan Kothapally, Chuihui Jin, and Anil Nalluri
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic Lexicon-Based Multi-agent System for Web Resources Markup</td>
<td>143</td>
</tr>
<tr>
<td>Vincenzo Di Lecce, Marco Calabrese, and Domenico Soldo</td>
<td></td>
</tr>
<tr>
<td>A Prototype Implementation of PPX: Pretty Printer for XML</td>
<td>149</td>
</tr>
<tr>
<td>Zhe Jin and Motomichi Toyama</td>
<td></td>
</tr>
<tr>
<td>ICIW 7: IWAS III</td>
<td></td>
</tr>
<tr>
<td>Personalization Mechanism for Delivering News Articles on the User's Desktop</td>
<td>157</td>
</tr>
<tr>
<td>Christos Bouras and Vassilis Tsogkas</td>
<td></td>
</tr>
<tr>
<td>A Novel Framework for Database Security Based on Mixed Cryptography</td>
<td>163</td>
</tr>
<tr>
<td>Hasan Kadhem, Toshiyuki Amagas, and Hiroyuki Kitagawa</td>
<td></td>
</tr>
<tr>
<td>Project Portfolio Management Systems: Business Services and Web Services</td>
<td>171</td>
</tr>
<tr>
<td>Vladimir Stantchev, Marc Roman Franke, and Andreas Discher</td>
<td></td>
</tr>
<tr>
<td>Detecting Ontology Mappings via Descriptive Statistical Methods</td>
<td>177</td>
</tr>
<tr>
<td>Konstantin Todorov</td>
<td></td>
</tr>
<tr>
<td>ICIW 8: IWAS IV</td>
<td></td>
</tr>
<tr>
<td>An Adaptive Scheduling Policy for Staged Applications</td>
<td>183</td>
</tr>
<tr>
<td>Mohammad Shadi Al Hakeem, Jan Richling, Gero Mühl, and Hans-Ulrich Heiß</td>
<td></td>
</tr>
<tr>
<td>A Heterogeneous Auto-offloading Framework Based on Web Browser</td>
<td>193</td>
</tr>
<tr>
<td>for Resource-Constrained Devices</td>
<td></td>
</tr>
<tr>
<td>Yang Zhang, Xue-tao Guan, Tao Huang, and Xu Cheng</td>
<td></td>
</tr>
<tr>
<td>Towards an Ontology for Software Product Quality Attributes</td>
<td>200</td>
</tr>
<tr>
<td>Ahmad Kayed, Nael Hirzalla, Ahmad A. Samhan, and Mohammed Alfayoumi</td>
<td></td>
</tr>
<tr>
<td>Performance of Different Mobile Payment Service Concepts Compared with</td>
<td>205</td>
</tr>
<tr>
<td>a NFC-Based Solution</td>
<td></td>
</tr>
<tr>
<td>Michael Massoth and Thomas Bingel</td>
<td></td>
</tr>
<tr>
<td>ICIW 9: IWAS V</td>
<td></td>
</tr>
<tr>
<td>Utilizing RSS Feeds for Crawling the Web</td>
<td>211</td>
</tr>
<tr>
<td>George Adam, Christos Bouras, and Vassilis Pouloupolous</td>
<td></td>
</tr>
<tr>
<td>Dynamic Composition of Service-Oriented Web User Interfaces</td>
<td>217</td>
</tr>
<tr>
<td>Stefan Pietschmann, Martin Voigt, and Klaus Meißner</td>
<td></td>
</tr>
<tr>
<td>Dynamic Services Adaptation to the User's Context</td>
<td>223</td>
</tr>
<tr>
<td>Bouchra Soukkarieh and Florence Sèdes</td>
<td></td>
</tr>
<tr>
<td>Automatic Ajax Application Testing</td>
<td>229</td>
</tr>
<tr>
<td>Sébastien Salva and Patrice Laurençon</td>
<td></td>
</tr>
<tr>
<td>ICIW 10: ONLINE II</td>
<td></td>
</tr>
<tr>
<td>Provision of the Personalized Social Network Service Based on</td>
<td>235</td>
</tr>
<tr>
<td>the Locality/Sociality Relations</td>
<td></td>
</tr>
<tr>
<td>Jung-Tae Kim, Jong-Hoon Lee, Hoon-Ki Lee, and Eui-Hyun Paik</td>
<td></td>
</tr>
<tr>
<td>Profiling the Protection of Sensitive Enterprise Multimedia Communication</td>
<td>239</td>
</tr>
<tr>
<td>Rainer Falk and Steffen Fries</td>
<td></td>
</tr>
</tbody>
</table>
A Multi-agent System for Traffic Control for Emergencies by Quadrants ...247
 Alejandro Rodríguez, Martín Eccius, Myriam Mencke, Jesús Fernández,
 Enrique Jiménez, Juan Miguel Gómez, Giner Alor-Hernandez,
 Rubén Posada-Gomez, and Guillermo Cortes-Robles
Fostering Participation in an Online Intellectual Community in a Graduate Educational Setting: A Case Study ...254
 Daniel Raymond Trí Đặng Firpo, Sumonta Kasemvilas, Peter Ractham,
 and Xuesong Zhang

ICIW 11: IWAS VI

COMODE: A Framework for the Development of Context-Aware Applications in the Context of MDE ..261
 Samyr Vale and Slimane Hammoudi
UPP: User Privacy Policy for Social Networking Sites ..267
 Esma Aïmeur, Sébastien Gambs, and Ai Ho
Similarity Management in Phonebook-Centric Social Networks ...273
 Péter Ekler, Zoltán Ivánfi, and Kristóf Aczél
Data Integration and Analysis for Performance Management in a Modern Police Force ...280
 Paul Hunton, Alan Jones, and Richard Short

ICIW 12: WSSA II

BOF4WSS: A Business-Oriented Framework for Enhancing Web Services Security for e-Business ..286
 Jason R. C. Nurse and Jane E. Sinclair
Towards Adapting Web Services for Multiple Devices ..292
 Guadalupe Ortiz and Alfonso Garcia de Prado
A Practical System of Domain Ontology Learning Using the Web for Chinese ...298
 Fang Tian, Peilin Jiang, and Fuji Ren
A Secure Comparison Technique for Tree Structured Data ..304
 Mohammad Ashiqur Rahaman, Yves Roudier, and Andreas Schaad

ICIW 13: IWAS VII

Reliable Monitoring for Runtime Validation of Choreographies ..310
 Michael von Riegen and Norbert Ritter
The Impact of Service Pricing Models on Service Selection ...316
 Julian Eckert, Deniz Ertogrul, Apostolos Papageorgiou, Nicolas Repp,
 and Ralf Steinmetz
Adapting LMS Architecture to the SOA: An Architectural Approach ...322
 Miguel Ángel Conde González, Francisco José García Peñalvo,
 María José Casany Guerrero, and Marc Alier Forment
Blueprint for the Intercloud - Protocols and Formats for Cloud Computing
Interoperability ..328
 David Bernstein, Erik Ludvigson, Krishna Sankar, Steve Diamond,
 and Monique Morrow

ICIW 14: WSSA III
Constraint Integration and Violation Handling for BPEL Processes ...337
 MingXue Wang, Kosala Yapa Bandara, and Claus Pahl
A Model-Driven Approach for Monitoring Business Performance in Web Service Compositions ..343
 Christof Momm, Michael Gebhart, and Sebastian Abeck
Web Mining Service (WMS), a Public and Free Service for Web Data Mining ..351
 Jose Maria Gago, Carlos Guerrero, Carlos Juiz, and Ramon Puigjaner
A Service-Oriented Middleware for Composing Context Aware Mobile Services357
 João Paulo Sousa, Eurico Carrpatoso, and Benjamin Fonseca

ICIW 15: WSSA IV
SPEWS: A Framework for the Performance Analysis of Web Services Orchestrated with BPEL4WS ...363
 Henrique Jorge A. Holanda, Giovanni Cordeiro Barroso,
 and Antonio de Barros Serra
Applying Semantic Web Service Composition for Action Planning in Multi-robot Systems ..370
 Shahab Mokarizadeh, Alberto Grosso, Mihhail Matskin, Peep Kungas,
 and Abdul Haseeb
Dynamic Composition of Semantically Annotated Web Services through QoS-Aware HTN Planning Algorithms ..377
 Anna Hristoskova, Bruno Volckaert, and Filip De Turck
A Framework for Hierarchical and Recursive Monitoring of Service Based Systems ..383
 Marco Comuzzi and George Spanoudakis

ICIW 16: WSSA V
Orchestration Evolution Following Dataflow Concepts: Introducing Unanticipated Loops inside a Legacy Workflow ..389
 Sébastien Mosser, Mireille Blay-Fornarino, and Johan Montagnat
Design and Verification of Web Services Compositions ..395
 Enrique Martinez, Maria Emilia Cambronero, Gregorio Diaz, and Valentín Valero
Query Structural Information of BPEL Processes ..401
 Zhilei Ma, Wei Lu, and Frank Leymann
SS-IDS: Statistical Signature Based IDS ..407
 Payas Gupta, Chedy Raïssi, Gerard Dray, Pascal Poncelet, and Johan Brissaud
ICIW 17: WSSA VI

E-Learning Designing and the Implementation in the Light of the Australian Flexible Learning Framework: The Syrian Virtual University Roadmap to Success ...413

Ayub Al-Badowi and Erbug Celebi

A Recommender System for Web Services Discovery in a Distributed Registry Environment ...418

Mohamed Sellami, Samir Tata, Zakaria Maamar, and Bruno Defude

Enhancing Semantic E-Government Workflows through Service Oriented Knowledge Provision ..424

Vedran Hrgovcic and Robert Woitsch

Assessing the Impact of Inherent SOA System Properties on Complexity ..429

Lei Liu, Stefan Thanheiser, and Hartmut Schmeck

ICIW 18: WSSA VII

A SOA-Based Mobile Guide to Augment Tourists’ Experiences with User-Generated Content and Third-Party Services ...435

Federica Paganelli, David Parlanti, Niccolò Francini, and Dino Giuli

A Grid Service for Resource-to-Agent Allocation ...443

Rosa Anna Micillo, Salvatore Venticinque, Rocco Aversa, and Beniamino Di Martino

A Generic P2P Collaborative Strategy for Discovering and Composing Semantic Web Services ..449

Mohamed Gharzouli and Mahmoud Boufaida

Automated Instantiation and Extraction of Web Service Choreographies ..455

Gregory Van Seghbroeck, Bruno Volckaert, Filip De Turck, and Bart Dhoedt

ICIW 19: WSSA VIII

Toward an Integrated Ontology for Web Services ..462

Yassin Chabeb, Samir Tata, and Djamel Belaïd

Selection Strategy of Rescue Servers Under Hot-Spot Congestion ..468

Shijie Xu, Chi-Hung Chi, Cheng Qian, and Chen Ding

Towards a Disciplined Engineering of Adaptive Service-Oriented Business Processes474

Nasreddine Aoumeur and Kamel Barkaoui

Ontology-Based Translation of Business Process Models ..481

Barry Norton, Liliana Cabral, and Jörg Nitzsche
ICIW 20: WSSA IX

DougFlow — Offering Scientific Applications via Web Services ... 487
 Christian Pöcher, Oleg Batrašev, Ulrich Norbisrath, and Eero Vainikko
Optimal Stratification of Transactions .. 493
 Olha Danylevych, Dimka Karastoyanova, and Frank Leymann
An Architecture for Reliable Mobile Workflow in a Grid Environment ... 499
 Bill Karakostas and George Fakas
An Approach to Preserving Consistency of SOAs in Dynamic Evolution ... 505
 Min Liu, Dianfu Ma, Yongwang Zhao, and Dou Sun
PULSE Extended ... 510
 Sanda Dragoș

ICIW 21: SLAECE I

Using Propagation of Distrust to Find Untrustworthy Web Neighborhoods ... 516
 Panagiotis Metaxas
The Copyright Protection Problem: Challenges and Suggestions .. 522
 M. Campidoglio, F. Frattolillo, and F. Landolfi
User-Centric Identity Management in Heterogeneous Federations .. 527
 Sebastian Rieger

ICIW 22: VEWAeL I

Information Technology (IT) Use and Children’s Academic Performance ... 533
 Linda A. Jackson, Alexander von Eye, Hiram E. Fitzgerald, Edward A. Witt, and Yong Zhao
Teaching Web Services with Virtual Environments: Improving Cross-Curricular Skills 539
 Guadalupe Ortiz
Virtual Design Studio and Web Applications for e-Learning .. 545
 Rusen Yamacli and Leyla Y. Tokman
Generating Virtual Worlds from Biodiversity Information Systems: Requirements, General Process and Typology of the Metaverse’s Models ... 549
 Didier Sébastien, Noël Conruyt, Rémy Courdier, and Tullio Tanzi

ICIW 23: VEWAeL II

A Rule-Based Approach for Developing a Competency-Oriented User Model for E-Learning Systems ... 555
 Mihaela Brut, Laura Asandului, and Gheorghe Grigoraș
Enhancing IMS LD Units of Learning Comprehension .. 561
 Iván Martínez-Ortiz, José Luis Sierra, and Baltasar Fernández-Manjón
Digital Libraries as Support for e-Learning Activities .. 567
 Angela Fogarolli and Marco Ronchetti
eLearning Platform for Rehabilitation of the Romanian Patients with Neurological Diseases ...573

Gladiola Andruseac, Hariton Costin, and Cristian Rotaru

ICIW 24: VEWAeL III

A Web Environment to Support Teaching Introductory Programming ..578

Dağhan Dinç and Suzan Üsküdarlı

Connecting Learning Object Repositories: Strategies, Technologies

and Issues ..583

Fredrik Paulsson

A Comparative Study on the Effectiveness of Podcasting in Distance Learning ..590

Hager Khechine, Sawsen Lakhal, and Daniel Pascot

Computer Aided Group Collaboration - An Experience Evaluated

through Quantitative and Qualitative Approaches ..596

Victor Hugo Zárate Silva, Manuel Juárez Pacheco,
Maria de la Luz Casas Pérez, Ricardo Valera Velázquez,
and José Luis Ramírez Alcántara

ICIW 25: SLAECE II

Collaborative and Transparent Decision Making under Temporary Constraint602

Hideyasu Sasaki

Modeling of Knowledge-Intensive Business Processes with Human Interactions608

Eckhard Ammann

Layered Government and E-Citizenship: Objectives and Technical Challenges

in the EU ..614

Vladimir Stantchev, Marten Schoenherr, and Jens Dietrich

ICIW 26: VEWAeL IV

Online Teaching in an Electronic Education Environment ..620

M. Ehmann, M. Goetz, S. Meerkamm, M. Igler, and S. Jablonski

Integrated University Management System Based on Open Source Tools ...626

Catalin Ioan Maican

Context-Aware mLearning Service Execution in an InfoStations Environment632

Ivan Ganchev, Stanimir Stoyanov, Máirtín O'Droma, and Veselina Valkanova

Privacy and Confidentiality in E-Learning Systems ..638

Christian Josef Eibl
ICIW 27: Poster Forum & Work in Progress

Web (Technologies and Tools) for Architectural Thinking Skills of Architecture
Students ..643
 Leyla Y. Tokman and Rusen Yamacli

ANSWER: A Semantic Approach to Film Direction ..645
 Ajay Chakravarthy, Richard Beales, Paul Walland, and Angelos Yannopoulos

ICIW 28: ENSYS

Sensory Effect Metadata for SMMD Media Service ..649
 Choi Bum Suk, Joo Sang Hyun, and Lee Hea Yong

Our Content: Generative Montage Methods for Multimedia Data ...655
 Shigeki Amitani, Zafer Bilda, Damian Hills, and Ernest Edmonds

Author Index ..661
Design and Verification of Web Services Compositions *

Enrique Martínez, María Emilia Cambronero, Gregorio Díaz, and Valentín Valero
Escuela Politécnica Superior de Albacete. Universidad de Castilla-La Mancha
Departamento de Sistemas Informáticos
Campus Universitario s/n. 02071. Albacete, SPAIN
{MEmilia.Cambronero,Gregorio.Diaz,Valentin.Valero}@uclm.es
{emartinez}@dsi.uclm.es

Abstract

In this work we explain how to perform the design and verification of a Web Services composition with time restrictions using the Web Services Translation tool, WST for short. We pay special attention to Web Services systems with timing restrictions. As illustration, we use a case study called “Form Generator Service”, a system that allows developers to manage a form repository by means of several Web Services. We show how to design this system and the verification of some properties on it, using a Timed Automata representation.

1. Introduction

The use of the Internet for doing business is becoming more and more important in the last years. This is because Web technologies allow providers to offer services in a cheaper, faster and more dynamic way. Web Services are a collection of functions that are packaged together and published in the network in a way they can be used by other programs. This is possible by the use of multiple standardized protocols in which Web Services rely on (Figure 1). This is an emerging technology, so there is still a lack of techniques and tools supporting the composition of Web Services.

Two main languages are being used in the Web Services composition framework: WS-BPEL (Web Services Business Process Execution Language [2]) at the orchestration level, and WS-CDL (Web Services Choreography Description Language [1]), at the choreography level. In brief the Orchestration describes the particular behaviour of each participant in a Web Service and the Choreography describes the global behaviour.

Figure 1. Stack of protocols for Web Services

One important aspect that must be covered when describing and analysing Web Services compositions is that of timing restrictions. These are quantitative restrictions that Web Services must fulfill in a specific scenario, which are essential for the correct operation of Web Services compositions. Systems with timing restrictions are the core of governmental, financial and industrial systems. The response time determines the grade of efficiency, correctness, and user satisfaction. Thus, in our tool, WST (Web Services Translation), timing aspects are considered as one of the main issues to be described and analysed. The aim of this tool is to deal with the design, implementation, verification and validation of Web Services compositions with time restrictions. In the design phase the Unified Modeling Language (UML 2.0 [3]) is used to model the system through a sequence diagram editor. The Web Services Choreography Description Language (WS-CDL) is used to obtain a choreography that corresponds to the provided sequence diagram. For the verification and validation phase we use a Timed Automata representation of the system, which is automatically obtained from the WS-CDL description, and the model checker of the UPPAAL tool [4] is used for validation and verification purposes.

Thus, using the UPPAAL tool jointly with the WST tool, we can detect some mistakes in the design phase, which can be fixed before starting the implementation. This technique reduces the cost of the final system since we are able to

* Supported by the Spanish government (cofinanced by FEDER founds) with the project TIN2006-15578-C02-02, and the JCCCLM regional project PAC06-0008-6995. The first author is supported by the European Social Fund and the Junta de Comunidades de Castilla-La Mancha (Spain).
detect and fix many bugs at the design phase.

The outline of the paper is as follows. Section 2 is about related work. A short explanation of how to use the WST tool is shown in Section 3. Section 4 presents the “Form Generator Service” case study, explaining how to design and verify the system. Finally, in Section 5 we show the conclusions and our future work.

2 Related Work

In [13] the problem of choreography correctness is addressed through the use of TIOTS (Timed Input Output Transition Systems) corresponding to WS-BPEL specifications. An algorithm that checks the compatibility between two TIOTS is proposed. The choreography is considered as correct if all the partners are compatible.

In [14] a conceptual model for representing Web Services with time restrictions based on FSA’s (Finite State Automata) is presented. A language called WSTL (Web Service Transition Language) that relies on this model is also introduced.

A tool called WSAT is presented in [7]. This tool is used for analyzing and verifying specifications of Web Services compositions through model-checking techniques. The language used in this work is WS-BPEL. The WS-BPEL specifications are translated into Guarded Finite State Automata (GFSA) that can be opened by the SPIN model-checker [9].

In [8] another tool called EA4B is presented. This tool generates an execution log for WS-BPEL. This logs can be used for monitoring or debugging purposes. EA4B can also be integrated with the WSAT tool.

Another tool called WS-VERIFY is shown in [10]. This tool also focuses on the analysis of WS-BPEL. In this case, the specification is translated into Web Services Timed State Transition Systems (WSTTS), which are similar to Timed Automata. The model-checker used in this case is NuSMV [11].

Finally, the design and implementation of a tool called WS-Engineer is presented in [12]. This tool is used for the verification of the implementation of Web Services compositions. It works by verifying if some specified properties are fulfilled by the composition.

3 Web Service Translation tool (WST)

The WST tool (http://www.dsi.uclm.es/retics/WST/) is a framework that allows developers to model and verify systems with time restrictions. The methodology that WST uses works as follows:

• First, the system is modelled by means of UML 2.0 sequence diagrams, by using an editor.

• Afterwards, these diagrams are converted into WS-CDL choreography specifications automatically. The UML 2.0 sequence diagrams are translated into WS-CDL by using the XML Metadata Interchange (XMI) exporting capability of WST. Thus, once the sequence diagram has been exported as an XMI document, we can use the Transform button in the second tab. By means of this button a number of XSL (Extensible Stylesheet Language [5]) rules are used in cascade to obtain the WS-CDL choreography description. These rules transform each section of the XMI document into a different element of the WS-CDL document. For instance, an object in the UML 2.0 sequence diagram is translated into the following WS-CDL entity:

```xml
<roleType name=name>
  <behavior name = name interface=iname? />+
</roleType>
```

• The resulting WS-CDL specifications are translated into UPPAAL Timed Automata. This translation can be performed by using the Transform button in the third tab. Again, a number of XSL stylesheets are used in cascade in order to obtain the Timed Automata representation supported by the UPPAAL tool. These rules translate each WS-CDL element into an XML element of the Timed Automata representation. The formalities of this translation are rather complex, and they are explained in [6]. As illustration, a single interaction of WS-CDL, with the syntax:

```xml
<interaction name=iname ...>
  <participate relationshipType=QName .../>
  <exchange name=NCname ...>
    <send variable="XPath-expression"? ... />?
    <receive variable="XPath-expression"? ... />?
  </exchange>
  <timeout time-to-complete="..."/>?
</interaction>
```

is translated into Timed Automata as follows:

```

```

```

```

```

```

Finally, the UPPAAL simulation engine and the model checker are used to validate and verify the system behaviour. If we detect any problem in this step, we return to the first step to correct the model.

The WST tool interface is divided into three different tabs to cover the full functionality of the tool:

1. The RT-UML DIAGRAM tab allows users to model the sequence diagrams that correspond to their systems. These diagrams can be saved, opened, deleted or exported to an XMI document for translation.

2. The RT-UML2WS-CDL tab allows users to convert the XMI representations of the diagrams into WS-CDL specifications. The resulting choreographies can be saved for future use.

3. The WS-CDL2TimedAutomata tab allows users to translate WS-CDL choreographies into XML documents describing Timed Automata. These final documents can then be saved, and immediately used in the UPPAAL tool.

4 Case Study: A Form Generator Service

Web Services are being developed for multiple purposes, to create blogs, to do searches, to purchase goods, to process data, to manage information or to create new Web contents. In the last category we can include the Form Generator Service. The aim of this service is to allow developers to manage a form repository. The service provides interfaces for creating new forms, deleting old forms, modifying existing forms, and recovering previously created forms. Developers can thus easily reuse a form when they are developing a Web site.

In this case study we focus our attention on the function of creating new forms in the repository. Figure 2 shows the sequence diagram that we have created for this function with the WST UML-editor. In this diagram we can distinguish three different parties interacting:

- The User is the developer who wants to create a new form in the repository. He has to send the name of this new form to the FormService and, after that, all the information about the fields that compose the form.
The **FormService** is the Web Service that manages the creation of the new form. It plays the role of the intermediary between the User and the DatabaseService, making the requests to the DatabaseService and sending the responses to the User.

The **DatabaseService** is the service that controls the access and modifications over the database where the information about the forms is stored. It guarantees the consistency and integrity of the database.

In the process of creating a new form we can distinguish two different phases:

1. The User has to choose a name for his new form. A request with this name is made to the database. If the name already exists a new name has to be chosen. Otherwise, the name of the form is stored in the database.

2. The User has to send all the information about the fields that compose the new form. If the DatabaseService spends more than 2 minutes before sending a response to the FormService a timeout error is sent to the User. Otherwise, an acknowledgement of the form creation is sent to the User.

Once the system has been modelled as a sequence diagram, it is exported to an XMI document. After that, the model is transformed into a WS-CDL specification by pressing the Transform button on the RT-UML2WS-CDL tab of the tool. Figure 3 depicts the XMI for this case study and the corresponding WS-CDL document.

After obtaining the WS-CDL document, we can move to the WS-CDL2TimedAutomata tab to perform the final transformation into Timed Automata. Figure 4 shows this conversion, from the WS-CDL specification to the resulting XML document with the Timed Automata specification.

These Timed Automata are synchronized through the use of channels for the message interchanges in the original diagram. Guards are used to model time restrictions (e.g. waiting time less than 2 minutes) and to control external choices (e.g. if the form name already exists). Variable updates in edges are used to reset clocks (e.g. initialization of waiting time) and to fix new values of integer and boolean variables.

When we open the resulting Timed Automata in the UPPAAL tool, we can perform a simulation of some possible behaviours of the system or we can verify some properties with the aim of proving that we have a sound system.
In this case, the properties that we intend to verify are the following:

1. We want to see if it is possible for the User party to reach the state where the form creation has finished successfully. The formula to check this property in UPPAAL is the first one in Figure 8. After pressing the checking button, we obtain that this formula is satisfied.

2. We want to see if when the FormService party reaches the state corresponding a timeout error, the value of the clock controlling to the waiting time is really greater than or equal to 2 minutes. The formula to check this property is the second one in Figure 8. In this case, the verifier shows again that the formula is satisfied.

3. We want to prove that when the User party reaches the state that begins the creation of the form fields, the value of the boolean variable controlling if the name of the form already exists is false. The formula to check this property is the third one in Figure 8. Again, the verifier shows that this formula is satisfied.

4. We want to see if after receiving a timeout error, the User party is asked to send the form information again. The formula for this property is the fourth one in Figure 8. In this case, the verifier shows that the formula is not satisfied. At this point, we should go back to our design and modify it. After that, we would repeat the translation process and we would try to verify the properties again.

5 Conclusions and future work

In this paper we have presented the WST tool and a case study to illustrate how this tool can be used in order to design and verify a Web Services system with time restrictions. The design phase is covered by using UML 2.0 sequence diagrams, and these diagrams are automatically translated into WS-CDL representations, which are in turn translated into Timed Automata, in a format supported by the UPPAAL tool.

Then, we consider that WST can be of interest for the software engineers in the process of Web Services design, with the purpose of validation and verification of the system design before starting its implementation.

As future work, we are planning to extend the functionality of WST with some new capabilities, for instance, we are working in a translation from WS-CDL to a timed model of Petri Nets (similar to Merlin’s Nets), for which a more compact representation can be obtained, in comparison with the Timed Automata representation, and for which there are a number of tools that support the model and that can be used for simulation and verification purposes.

References

Figure 8. Properties verified with UPPAAL

