Proceedings

IEEE International Conference on e-Business Engineering
ICEBE 2009

IEEE International Workshop on Advances in RFID
AiR 2009

IEEE International Workshop on Service-Oriented Applications, Integration and Collaboration
SOAIC 2009

IEEE International Workshop on Service-Oriented Knowledge Management and Business Intelligence
SOKMBI 2009

IEEE International Workshop on Applications and Services on Cloud
ASOC 2009

21-23 October 2009
Macau, China
Proceedings

IEEE International Conference on e-Business Engineering
ICEBE 2009

IEEE International Workshop on Advances in RFID
AiR 2009

IEEE International Workshop on Service-Oriented Applications, Integration and Collaboration
SOAIC 2009

IEEE International Workshop on Service-Oriented Knowledge Management and Business Intelligence
SOKMBI 2009

IEEE International Workshop on Applications and Services on Cloud
ASOC 2009

21-23 October 2009
Macau, China

Edited by
Jen-Yao Chung, Jingzhi Guo, and Shah Nazaraf

Sponsored by
IEEE Computer Society, Technical Committee on Electronic Commerce (TCEC)

With Support of
University of Macau; Arizona State University, Software Research Laboratory; Coventry University, Computer Science Department; Fudan University, Software School; IBM China Research Lab; Singapore Management University, School of Information Systems; The Hong Kong University of Science and Technology, Department of Computer Science & Engineering; The University of Hong Kong, Department of Computer Science; Xi’an Jiaotong University

Los Alamitos, California
Washington • Tokyo
Table of Contents

Message from ICEBE 2009 General Chairs ... xiii
Message from ICEBE 2009 Program Chairs ... xv
ICEBE 2009 Organizing Committee .. xvii
ICEBE 2009 Program Committee .. xx
ICEBE 2009 Reviewers ... xxiii
ICEBE 2009 Keynote I ... xxiv
ICEBE 2009 Keynote II ... xxv
ICEBE 2009 Industry Keynote ... xxvi
ICEBE 2009 Invited Talk .. xxvii
Message from the AiR 2009 Chairs .. xxviii
AiR 2009 Chairs and Program Committee ... xxix
Message from the SOAIC 2009 Chairs ... xxx
SOAIC 2009 Chairs and Committee .. xxxi
Message from the SOKMBI 2009 Chairs ... xxxii
SOKMBI 2009 Chairs and Committee .. xxxiii
Message from the ASOC 2009 Chair .. xxxv
ASOC 2009 Chairs and Committee .. xxxvi

Session 1: Software Engineering for e-Business

Using an Enterprise Mashup Infrastructure for Just-in-Time Management of Situational Projects ... 3
 Shahriar Mohammadi, Ali Khalili, and Sarah Ashoori
Ontology Module Metrics .. 11
 Sunju Oh and Joongho Ahn
Impacts Separation Framework for Performance Prediction of E-Business Systems ... 19
 Xiang Huang, Wenbo Zhang, Bo Zhang, and Jun Wei
Session 2: Data and Knowledge Management for e-Business - I

Personalized Scheduling Search Advertisement by Mining the History Behaviours of Users ...29
 Guangyi Xiao, Zhiguo Gong, and Jingzhi Guo

Efficient Web Page Main Text Extraction towards Online News Analysis ..37
 Baoyao Zhou, Yuhong Xiong, and Wei Liu

Name Disambiguation Using Semantic Association Clustering ...42
 Hai Jin, Li Huang, and Pingpeng Yuan

Session 3: Data and Knowledge Management for e-Business - II

Agent-Based Electronic Market With Ontology-Services ..51
 Nuno Silva, Maria João Viamonte, and Paulo Maio

Multi-agent Modeling and Analysis for E-Commerce Transaction Network Based on CAS Theory ..59
 Chunhui Piao, Xufang Han, and Shuren Zhang

Towards an Open, Self-Adaptive and P2P Based e-Market Infrastructure ..67
 Li Guo, John Darlington, and Brian Fuchs

Simulation-Based Evaluation of Workflow Escalation Strategies ..75
 Ka-Leong Chan, Yain-Whar Si, and Marlon Dumas

Session 4: Integration and Collaboration - I

Virtual Wealth Realization in Virtual and Real Worlds ...85
 Jingzhi Guo, Angelina Chow, Zhiguo Gong, and Chengzheng Sun

A Service-Based Framework for Pharmacogenomics Data Integration ..95
 Kun Wang, Xiaoying Bai, Jing Li, and Cong Ding

Role-Centric RESTful Services Description and Composition for E-Business Applications ...103
 Hao Yu, Cheng Zhu, Hongming Cai, and Boyi Xu

Rule-Based Service Oriented Business Network Process Realization in Dynamic Virtual Enterprises111
 Alireza Khoshkbarforoushha and Mohammad Aghdasi

Session 5: Service Engineering - I

A Multiple Objectives Optimization Approach for QoS-Based Web Services Compositions ..121
 Ci-Wei Lan, Rick C.S. Chen, Addison Y.S. Su, Angus F.M. Huang, Stepehen J.H. Yang, and Jen-Yao Chung

The Design and Implementation of Service Reservations in Real-Time SOA ..129
 Mark Panahi, Weiran Nie, and Kwei-Jay Lin

An Evaluation of a Service-Oriented Platform for Indexing Media Collections ..137
 Juan Miguel Espinosa Carlin, Diana Luz, and Cheng Abusabal
Session 6: Service Engineering - II
Dependency-Guided Service Composition for User-Centric SOA ... 149
 W.T. Tsai, Peide Zhong, Xiaoying Bai, and Jay Elston
A Methodology for Transactional Risk Assessment and Decision Making in e-Business Interactions ... 157
 Omar Hussain, Tharam Dillon, Elizabeth Chang, and Farookh Hussain
Audio Watermarking Pre-process Algorithm ... 165
 Huan Li, Zheng Qin, and Liping Shao

Session 7: Security, Privacy and Open Source - I
Trust and Privacy in Dissemination Control .. 173
 Xiaojun Ye, Zude Li, Bin Li, and Feng Xie
The Development Mode of Trust E-commerce Services .. 181
 Yulong Shen, Qingqi Pei, Xinghua Li, Hailing Feng, and Jianfeng Ma
Research on Trust Management Model for E-Commerce Based on Fuzzy Clustering Method .. 188
 Chunhui Piao and Xiuna Gan

Session 8: Security, Privacy and Open Source - II
Achieving P-Sensitive K-Anonymity via Anatomy .. 199
 Xiaoxun Sun, Hua Wang, Jiuyong Li, and David Ross
On the Detection of DDoS Attackers for Large-Scale Networks ... 206
 Dalia Nashat, Xiaohong Jiang, and Susumu Horiguchi
 Kan Watanabe, Masaru Fukushi, and Susumu Horiguchi
Symmetrically Oblivious Envelope Protocol .. 219
 Bao-Hong Li, Kun Zhen, and Yin-Liang Zhao

Session 9: Mobile and Pervasive Commerce
A Heuristic Algorithm for Broker Deployment in RFID Applications ... 227
 Yifeng Qian, Beihong Jin, and Donglei Cao
RFIDSLT: A Data Lineage Tracing Method for Complex Query over RFID Streams .. 233
 Yongli Wang, Jiang-Bo Qian, and Ran Ma
Virtual Credit Cards on Mobile for M-Commerce Payment .. 241
 Narongrit Waraporn, Manawat Sithiyavanich, Hathai chanok Jiawattanasawat, and Narin Pakchai
A Multi-step Task Allocation Algorithm of Mobile Agent Based on Mobile Ad Hoc Network .. 247
 Hui He, Fan Wei, and Yong Qi
Session 10: Industry Experience and Applications - I

The Design and Implementation of a Smart Building Control System ... 255
 Han Chen, Paul Chou, Sastry Duri, Hui Lei, and Johnathan Reason
Exploring Practical Mobile Interaction for Enterprise Business Process ... 263
 Juwei Shi, Lina Ren, Jiajia Wen, Yabo Li, and Qi Yu
Cross Border Financing Scheme Design under the RMB Currency Swap Framework .. 271
 Zongwei Luo

Session 11: Industry Experience and Applications - II

Dynamic Scaling of Web Applications in a Virtualized Cloud Computing Environment .. 281
 Trieu C. Chieu, Ajay Mohindra, Alexei A. Karve, and Alla Segal
Designing a Credit Approval System Using Web Services, BPEL, and AJAX .. 287
 Vincent C.T. Chan, Dickson K.W. Chiu, Michelle Watson, Patrick C.K. Hung, Haiyang Hu, Hua Hu, and Yi Zhuang
How Can We Successfully Implement the ERP Activity? ... 295
 Te-King Chien and Huei-Shan Tseng

Session 12: Data and Knowledge Management for e-Business - III

Hierarchical Classification of Business Information on the Web Using Incremental Learning 303
 Yi Wang, Zhiguo Gong, and Jingzhi Guo
Temporal Exception Prediction for Loops in Resource Constrained Concurrent Workflows 310
 Iok-Fai Leong and Yain-Whar Si
Knowledge-Based Supervision Model for Electronic Payment .. 316
 Hao Sun, Yueting Chai, and Yi Liu
A P2P-Based E-Business Portal Model .. 321
 Zixuan Shao, Zhiyuan Fang, and Jie Yang
Calibrating Resource Allocation for Parallel Processing of Analytic Tasks .. 327
 Jianfeng Yan and Wen-Syan Li

Session 13: Integration and Collaboration - II

Value at Risk Management in Multi-period Supply Inventory Coordination .. 335
 Zheng-ying Cai, Rong Xin, and Renbin Xiao
Enterprise Isomorphic Mapping Mechanism: Towards Ontology Interoperability in EIS Development 340
 Gan Mingxin
Baidu.com's Case Study - Pros and Cons of Website Ranking Service under Chinese Anti-monopoly Mechanism .. 346
 Yimeei Guo, Dongsheng Yan, and Weiwan Zhang
Price Dispersion in C2C Market Based on Multi-agent Modeling and Simulation ..351
Qiuju Yin, Lihui Min, and Peng Miao

Session 14: Service Engineering - III
Technical Challenges and Solution Space for Developing SaaS and Mash-Up Cloud Services ..359
Hyun Jung La, Si Won Choi, and Soo Dong Kim
An Ontology-Driven Discovery Architecture to Support Service Composition ..365
Yingzi Wang, Xiaolin Zheng, and Deren Chen
Combining Intelligent Agent with the Semantic Web Services for Building an e-Commerce System ..371
Bao Cui-Mei
A Comparative Study between WSCI, WS-CDL, and OWL-S ..377
Maria Emilia Cambronero, Gregorio Díaz, Enrique Martínez, and Valentín Valero
A Method of QoS Measurement Based on User Behavior Analysis ..383
Guo-qi Liu, Zhi-liang Zhu, Dan-cheng Li, and Ying Liu

Session 15: Service Engineering - IV
A Quantitative Service Accountability Model ..391
Joe Zou, Christopher J. Pavlovski, Christopher De Vaney, and Yan Wang
Applying Context-Awareness to Service-Oriented Architecture ...397
Lian Yu, Yang Yang, Yongchao Gu, Xu Liang, Shan Luo, and Frank Tung
A P2P-Based Semantic Web Services Composition Architecture ..403
Zhu Zhengdong, Hu Yahong, Lan Ronggui, Wu Weiguo, and Li Zengzhi
A SOA Based Software Engineering Design Approach in Service Engineering ..409
Weider D. Yu and Chia H. Ong
Modeling E-Commerce Website Quality with Quality Function Deployment ..417
Chang Jinling, Song Tong, Li Chuncan, and Song Tao

Session 16: Security, Privacy and Open Source - III
Trust-Based Access Control for Privacy Protection in Collaborative Environment ..425
Min Li, Hua Wang, and David Ross
A Solution of Electronic Authentication Services Based on PKI for Enabling e-Business ...431
Xiaoqi Zhang, Meina Song, and Junde Song
Preventing Wormhole Attacks in Mobile Commerce ..437
Hao-Ting Pai and Fan Wu
AiR 2009: IEEE International Workshop on Advances in RFID Session 1

The Research of User Participation Mechanism in Education Resource Warehouse Based on the Microformat Concept ..445
Xinying Zhang, Zhenzhen Meng, and Lei Fan

Evaluation and Research on Green Strength of Reverse Logistics System ..451
Sheng Zeng and Wei Yu

Enhancements to a Lightweight RFID Authentication Protocol ...454
Xiaowen Zhang, Zhanyang Zhang, and Xinzhou Wei

Calculation and Application in RFID of the PCB Spiral Inductors ..460
Dong Hui, Yisheng Zhu, and Baishan Zhao

Research on Urban Traffic Improvement Based on Meticulous Traffic Design ...465
XianYong Gan and HongYi Yang

AiR 2009: IEEE International Workshop on Advances in RFID Session 2

Risk Analysis and Measurement in Warehouse Financing ..469
Ying Yin, Zongwei Luo, and Yulian Fei

RFIDGlove: A Wearable RFID Reader ..475
Leire Muguira, Juan Ignacio Vazquez, Asier Arruti, Jonathan Ruiz de Garibay, Izaskun Mendia, and Silvia Renteria

RFID Middleware Event Processing Based on CEP ..481
Yulian Fei, Jun Hu, Ertian Hua, and Zongwei Luo

Hash-Based Tag Ownership Transfer Protocol against Traceability ..487
Yongming Jin, Huiping Sun, and Zhong Chen

A New Frame Size Adjusting Method for Framed Slotted Aloha Algorithm ..493
Cuicui Yu and Feng Zhou

Research on the Maintenance Decision-Making of Cement Concrete Pavement Based on Preventive Maintenance ..497
Jian Zhao and Jia Xu

SOAIC 2009: IEEE International Workshop on Service-Oriented Applications, Integration and Collaboration Session 1

A Reputation-Based Service Selection Scheme ..501
Ping Wang, Kuo-Ming Chao, Chi-Chun Lo, Ray Farmer, and Pu-Tsun Kuo

The Fitness Evaluation Model of SAAS for Enterprise Information System ..507
Yonghe Lu and Bing Sun

Open Identity Management Framework for SaaS Ecosystem ..512
Wang Bin, Huang He Yuan, Liu Xiao Xi, and Xu Jing Min

Proxy Pattern Informatization Research Based On SaaS ..518
Huawen Li and Qingjie Wang
Customizable Data Exchange Based on Web Service ... 522
 Jun Xu, Gang Xiao, JiaWei Lu, Qianhui Liang, and Jun Shen

SOAIC 2009: IEEE International Workshop on Service-Oriented Applications, Integration and Collaboration Session 2

A Global Information Model for Service-Oriented System Engineering .. 529
 Yinsheng Li, Yunyi Zhang, Han Chen, and Ying Huang
Multi-level Based Framework for Organizing and Composing Semantic Web Services ... 535
 N. Temglit and M. Ahmed Nacer
The Research of Evaluation and Index System Based on IT Enterprise Service Capability .. 541
 Zhiyuan Fang, Lin Zhao, and Zixuan Shao
User-Centered Design and Visualization of Service Oriented Recommender Agents:
An Approach to Achieve Better Consumers' Involvement in E-Commerce Systems ... 545
 Rui Wang and Xiangyu Wang

SOKMBI 2009: IEEE International Workshop on Service-Oriented Knowledge Management and Business Intelligence Session 1

Influence Factors to Web2.0 Websites Users' Attitude and Behavioral Intention .. 553
 Zhiyuan Fang, Meiyan Xiao, Yang Jie, and Shao Zixuan
Ontological User Profiling and Language Modeling for Personalized Information Services .. 559
 C.F. So, Chapmann C.L. Lai, and Raymond Y.K. Lau
Ontology Based Content Management for Digital Television Services ... 565
 Benjamin Lui, Dickson K.W. Chiu, Haiyang Hu, Hua Hu, and Yi Zhuang

SOKMBI 2009: IEEE International Workshop on Service-Oriented Knowledge Management and Business Intelligence Session 2

Knowledge-Based Application Generator: An Automatic Approach to Service-oriented Knowledge Management of Systems Knowledge ... 573
 Michael M. T. Ho
Audit Trail Analysis for Traffic Intensive Web Application ... 577
 Ka-I Pun and Yain-Whar Si
Online PSO for Web Marketing Optimization .. 583
 Alfredo Milani and Valentino Santucci
Service Component Architecture for Vending Machine System in Cloud Computing

Feng-Cheng Lin, Yi-Shiou Lee, Chih-Hao Hsu, Kuan-Yu Chen, and Tzu-Chun Weng

An Approach to Children Surveillance with Sensor-Based Signals Using Complex Event Processing

Ruei-Kai Lee, Chih-Hao Yu, Min-Siong Liang, and Ming-Whei Feng

A Cloud-Based Trajectory Index Scheme

Shih-Tsun Chu, Chao-Chun Yeh, and Chun-Lung Huang

An Ecosystem Approach for Healthcare Services Cloud

Henry H. Chang, Paul B. Chou, and Sreeram Ramakrishnan

Author Index
A comparative study between WSCI, WS-CDL, and OWL-S *

María Emilia Cambronero, Gregorio Díaz, Enrique Martínez, and Valentín Valero
Escuela Politécnica Superior de Albacete, Universidad de Castilla-La Mancha
Departamento de Sistemas Informáticos
Campus Universitario s/n. 02071. Albacete, SPAIN
{MEemilia.Cambronero,Gregorio.Diaz,Valentin.Valero}@uclm.es
{emartinez}@dsi.uclm.es

Abstract

Choreography languages allow us to describe Web Services compositions from a global viewpoint in Service Oriented Architectures (SOA). However, none of the existing languages has achieved the status of de facto standard for that purpose until now. In this paper we compare three existing proposals to specify Web Services choreographies: WSCI, WS-CDL, and OWL-S. First, we describe the main characteristics of each one of these languages, and after that we compare the different structures of the three languages. Finally, we present some conclusions of our work.

1. Introduction

The importance of Service-Oriented Architectures (SOA) has grown in the last years because they allow the integration of software applications between different organizations. In these architectures, applications are exposed as services, and these services are interconnected through the use of a set of standards (SOAP, UDDI, WS-Security,…). This is the reason because standardization is one of the main aspects of SOA. While a certain level of maturity has been achieved in the adoption of standards to interconnect and describe Web Services, there are still challenges related to the business processes executed by Web Services compositions.

The terms orchestration and choreography refer to two ways of describing Web Services compositions. Orchestration languages always represent the composition from the viewpoint of the parties involved in this composition. WS-BPEL is the most adopted language for that purpose.

On the other hand, the target of choreography languages is the coordination of long-running interactions between multiple distributed parties, where each one of the parties uses Web Services to offer his externally accessible operations. Choreography languages depict the composition from a global viewpoint, showing the interchange of messages between parties. However, there is not an only standard that has been widely adopted for that purpose until now.

Our goal with this paper, then, is to present a comparative study of three existing languages to specify Web Services choreographies: Web Service Choreography Interface (WSCI, [1]), Web Service Choreography Description Language (WS-CDL, [2]), and Ontology Web Language for Services (OWL-S, [3]).

The rest of the paper is structured as follows: Section 2 shows a general description of WSCI language. Section 3 explains the main features of WS-CDL language. Section 4 provides a brief description of the DAML program and the OWL-S language. Section 5 is devoted to the comparison of the different structures of these languages. Finally, in Section 6, some conclusions are presented.

2. Web Service Choreography Interface (WSCI)

The Web Service Choreography Interface (WSCI, [1]) is an XML-based language to describe the interface of a Web Service participating in a choreographed interaction with other services. This interface shows the flow of messages exchanged by the Web Service. The language has been developed by companies like Sun, SAP, BEA and Intalio.

A WSCI interface describes the observable behavior of only one Web Service. This behavior is expressed by means of temporal and logical dependencies in the flow of messages. For that purpose WSCI includes sequencing rules, correlation, exception handling, and transactions. WSCI also describes the collective message exchange among the
Web Services participating in the choreography, providing a global view of the interactions. Therefore, a WSCI choreography consists of a set of interfaces, one for each Web Service taking part of it, as we can see in Figure 1.

Figure 1. WSCI architecture

Contexts are used to describe the environment within which a set of activities is executed. These contexts include the set of declarations available to the activities, the set of possible exceptions and the behavior related to these exceptions, and the transactional properties of the activities, including the compensations to undo these activities.

WSCI uses a mechanism called correlation to associate a message with a concrete conversation. Multiple conversations can be distinguished through the use of different correlation instances. Properties of a concrete correlation are communicated as part of messages exchanges.

3. Web Service Choreography Description Language (WS-CDL)

The Web Service Choreography Description Language (WS-CDL, [2]) is an XML-based language to describe peer-to-peer collaborations of Web Services taking part in a choreography. This description defines, from a global viewpoint, the common behavior of the services, and the ordered message interchanges to make reaching a common business goal possible.

The goal of specifying Web Services choreographies is composing peer-to-peer interactions between any kind of services, regardless of the programming language or the environment that host the service. In WS-CDL the collaboration between Web Services takes place within a set of agreements about the ordering and constraint rules.

Information is always exchanged between participants within a choreography. A participant groups all the parts of the collaboration that must be implemented by the same entity. A role enumerates a potential behavior of a participant within an interaction. A channel is a point of collaboration between participants specifying where and how information is exchanged. Finally, a relationship is used to identify the mutual obligations that must be fulfilled to succeed.

4. Ontology Web Language for Services (OWL-S)

The Ontology Web Language for Services (OWL-S, [3]) was originally known as DAML-S. The objective of the DARPA Agent markup Language (DAML) program is the development of a language and tools that facilitate the concept of Semantic Web. As part of this program, the Web Services ontology OWL-S has been developed. The aim of this ontology is to automate the discovery, invocation, composition, interoperation and monitoring of Web Services. This ontology has been developed by Carnegie Mellon University, Nokia, Stanford University, ...

In Figure 2 we can see the ontology for Web Services proposed by OWL-S. This ontology is based on providing three essential kinds of information about the services:

Figure 2. Web Services ontology

- **What does the service provide?** This information is given by the Service Profile.
- **How is the service used?** This information is given by the Service Process Model.
- **How to access the service?** This information is provided by the Service Grounding.

Briefly, the Service Profile provides the information that agents need to discover the service, while the Service Process Model and the Service Grounding give the information that agents need to use the service.

Although OWL-S defines an ontology for each one of these three areas, it also allows the definition of alternative approaches. OWL-S also defines another ontology for the required resources. This ontology covers the description of physical resources, temporal resources and computational resources related to the services.
5 Comparison

5.1 Basic Structures

WSCI In WSCI the basic activities are called *atomic activities* and the *action* element is the main one. This element describes the way in which Web Services use an elementary operation within a context, e.g., the exchange of a message with another Web Service. The *operation* attribute can be used to reference a Web Services Description Language (WSDL) operation that the action performs.

The *role* attribute is an optional attribute that associates an action with a role name. It can be used to reference the definition of a role given by some other specification.

The *correlate* element is used to relate an action to a correlation definition. It serves to indicate in which particular execution context is performed the action, allowing us to correlate a message with a particular conversation. The *correlation* attribute is mandatory and it references a particular correlation specification.

The *call* element is used to indicate the activities that will happen while an action that handles a request-response operation is performed by a Web Service. This element is forbidden for all WSDL operations apart from request-response (the service receives a message and sends a response).

WS-CDL In WS-CDL the basic building block of a choreography is the *interaction* element. It indicates information exchanges between participants, possibly including the synchronization of some information values. These interactions are performed when one participant sends a message to another participant in the choreography. When the message exchanges complete successfully, the interaction completes normally. The *channelVariable* attribute specifies the channel variable used to do the communication during the interaction and the *operation* attribute specifies the name of operation that is associated with the interaction.

The *participate* element specifies the relationship type the interaction participates in, and the requesting and accepting participants.

The *exchange* element is used to exchange information during the interaction. The *action* attribute specifies the direction of the exchanged information, i.e., request or respond.

The *send* element and the *receive* element inside the exchange element indicate that information is sent from a participant or information is received at a participant respectively. These elements can also specify the variables exchanged, and if an exception must be thrown.

The *timeout* element allows us to specify the maximum amount of time to complete an interaction, by means of the *time-to-complete* attribute. When this time is exceeded, a timeout occurs. This element also allows us to modify some records in both participants when the timeout occurs.

Finally, the *record* element is used to create or change the value of one or more variables.

OWL-S In OWL-S services are modeled as processes. These processes are specifications of the ways clients may interact with services. For that purpose, OWL-S includes a subclass of the Service Model called *Process*.

We can distinguish three different kinds of processes: atomic processes, simple processes, and composite processes. *Composite processes* correspond to activities that require multiple service interactions, so we only talk about atomic and simple processes in this section.

Atomic processes are executed in a single step and never have subprocesses. They just receive an input message, do some work, and finally send an output message. There are always only two participants for that kind of process, the *client* and the *server*.

Simple processes have also a single step execution. They are used as abstractions, providing a view of some atomic process. In this case, the simple process is *realizedBy* the atomic process.

Finally, we must take into account that processes can have two different goals: They can return some new information based on some given information (using *inputs* and *outputs*) or they can produce a change in their environment (using *preconditions* and *effects*). There are several classes defined in the OWL-S model related to these four elements.

Discussion The three languages have basic structures to describe the message exchange between parties in a composition, but there are several differences between the elements used for that purpose. While the *interaction* element in WS-CDL allows us to exchange multiple messages between two parties (in both directions), the *action* element in WSCI and the *atomic process* in OWL-S refer to a single exchange.

The *interaction* element in WS-CDL pays special attention to the variables exchange between the different parties in each *exchange* element, while the *action* element in WSCI only specifies the operation performed by the message. In OWL-S there is a list of inputs and outputs related to each *atomic process*.

Finally, each *action* element in WSCI only specifies one of the roles participating in the exchange, the sender or the receiver. The *connect* element is used in the global model to relate a send message to a receive message from different interfaces. The *interaction* element in WS-CDL specifies both roles, indicating which one is the requesting participant and which one is the accepting participant. In OWL-S the *atomic processes* always have two properties to indicate which role is the client of the service and which role is the server. In this aspect, WS-CDL and OWL-S are more powerful than WSCI, in the sense that they need less code to express a collaboration between two parties.
5.2 Complex Structures

WSCI In WSCI complex activities contain a set of activities and define the order in which these activities are performed. A complex activity can contain one or multiple activity sets. Next, we are going to see in more detail each one of the complex activities that can be used:

- The all activity performs the whole set of activities that contains in any order, possibly in parallel.
- The sequence activity performs all the activity set in sequential order.
- The choice activity performs only one activity set from the collection of multiple activity sets within this complex activity. The decision is made based on events. The event can be the reception of a message, the expiration of a timeout, or the throwing of a fault. When multiple events overlap, there is no way to know which one of the possible activity sets is executed.
- The foreach activity executes the activity sets within repeatedly. The select attribute is an expression that evaluates to a list of items. The activity set is repeated once for each item in this list. If the list is empty, the activity set is not performed.
- The switch activity selects one activity set from the collection of multiple activity sets within this complex activity based on the evaluation of conditions. All the case elements inside are mutually exclusive, selecting the corresponding activity set if the value of the condition is true for that case. Only one case can be executed, so if multiple case elements can be performed, the first one in the definition has the biggest priority. If no other condition is fulfilled, the activity set within the default element is performed.
- The until activity performs the activity set that contains repeatedly based on a Boolean condition. The until activity is repeated one or more times because the condition is evaluated after each iteration of the activity set. If false the activity set is repeated, otherwise the activity ends.
- The while activity performs the activity set that contains repeatedly based on a Boolean condition. The while activity is repeated zero or more times because the condition is evaluated before each iteration of the activity set. If true the activity set is executed, otherwise the activity ends.

The workunit element specifies a condition that must be fulfilled in order to perform some work and/or the repetition of some work. It completes successfully when the set of activities inside completes successfully. The optional attribute guard specifies the condition that must be fulfilled to perform the workunit, whereas the optional attribute block, with false value as default, indicates whether the element have to block waiting for the “true” evaluation of the guard condition or it skips the activities inside when the guard condition evaluates to “false”. The optional attribute repeat specifies the repetition condition of the workunit and it is always not blocking. When there is not guard condition specified, then it is considered to be always true, while when there is not repetition condition specified, then the workunit is not considered to be executed again after one execution.

The ordering structures are used to combine basic activities and other complex activities in a nested way, expressing the order in which actions are performed within the choreography. There are three ordering structures:

- The sequence ordering structure expresses that the set of activities inside must be executed sequentially.
- The parallel ordering structure indicates that the set of activities inside must be executed concurrently. It completes successfully when all the concurrent activities complete successfully.
- The choice ordering structure specifies that only one of multiple activities can be executed. If the choice have workunits inside, only the first one in lexical order with a “true” guard condition is selected. If there are other activities, there is no way to know which one is selected; it is considered as a non-observable decision.

OWL-S Composite processes in OWL-S contain other processes of any kind in a nested way. They also specify the way in which their contents are executed, such as sequence or any order. The composedOf property is used to specify the control construct corresponding to the composite process, i.e., the way in which their contents are executed. The control constructs provided by OWL-S are the following:

- The Sequence control construct specifies a list of subprocesses to be executed in a row. The ControlConstructList inside contains the list of subprocesses to be executed in sequence.
- The Split control construct specifies a set of subprocesses to be executed concurrently. This process completes as soon as all its subprocesses has begun their execution. The ControlConstructBag inside contains the set of subprocesses to be executed in parallel.
- The Split+Join control construct also specifies a set of subprocesses to be executed concurrently, but in this
case the process completes when all its subprocesses have finished. Again, the ControlConstructBag contains the set of subprocesses to be executed in parallel.

- The Any-Order control construct specifies a set of subprocesses to be executed in any order but not concurrently. The process completes when all its subprocesses have finished. This control construct also uses the ControlConstructBag to specify the subprocesses that contains.

- The Choice control construct specifies a set of subprocesses and only one of them is executed. The selection criteria are non-observable, so any of the subprocesses can be chosen. This kind of composite process also uses the ControlConstructBag to specify all the possible subprocesses.

- The If-Then-Else control construct executes different subprocesses depending on the value of a condition. The ifCondition property specifies the condition we have to test. The then property specifies the subprocess we execute if the condition is “true”, whereas the else property specifies the subprocess we execute when the condition is “false”.

- The Repeat-While control construct iterates the execution of a subprocess while a condition evaluates to true. This condition is always evaluated before each execution. The whileCondition property specifies the condition we test, and the whileProcess property specifies the subprocess we execute repeatedly.

- The Repeat-Until control construct iterates the execution of a subprocess as long as a condition evaluates to true. This condition is always evaluated after the execution, so at least one execution is done. The untilCondition property specifies the condition we test after each execution, and the untilProcess property specifies the subprocess we execute repeatedly.

Discussion In Table 1 we show the equivalences between the different complex structures we have described corresponding to each language.

The sequence construction exists in the three languages with the same meaning, the sequential execution of the activities or processes within the construction.

The choice construction also exists in the three languages but there are some differences. While in WSCI the selection is based on the triggering of an event, in WS-CDL and OWL-S the selection criteria for the activities inside are non-observable. WS-CDL also allows us to use workunits within the choice, restricting the possible selections to the workunits that match their guard condition.

A construction to indicate the concurrent execution of several activities also exists in the three languages, but with different names. The all construction in WSCI indicates that the activities are executed in parallel or in any order (but not concurrently). The parallel construction in WS-CDL indicates that the activities are executed concurrently (the specification says nothing about a possible execution in any order but not concurrently). Last, in OWL-S we have three different constructions for that purpose: The Split process indicates the concurrent execution of all its subprocesses without waiting for the completion of these subprocesses, the Split+Join process also indicates the concurrent execution of all its subprocesses but it waits for the completion of them, and the Any-Order process indicates the execution in an undefined order of the subprocesses but not concurrently.

The switch construction, that selects one activity from a collection, only exists in WSCI, but it can be emulated in WS-CDL and OWL-S by using some other construction. In WS-CDL we can use multiple non-blocking workunits with the guard condition specified, while in OWL-S we have the If-Then-Else process and with several of these processes nested we can achieve the same behavior.

Both, the until construction in WSCI and the Repeat-Until process in OWL-S, indicate the repetition of the contents based on the truth value of a condition, where the condition is evaluated at the end of each iteration. This behavior can be emulated in WS-CDL by using a workunit with a repeat condition specified.

We also have the while construction in WSCI and the Repeat-While process in OWL-S indicating the repetition of the contents based on the truth value of a condition, but with the condition evaluated before each iteration. In this case, an emulation in WS-CDL can be done by using a workunit with a guard and a repeat condition specified (both evaluating the same condition).

Finally, the foreach construction only exists in WSCI and there is not any equivalent construction in the other two languages.

6. Final Discussion

Both, WSCI and WS-CDL, are W3C proposals, but WSCI last update was released in 2002, so it has not got received any attention in the last years. On the other hand, WS-CDL is the ongoing standardization initiative for Web Service choreography, but it has not achieved the status of being accepted as the de facto standard for that purpose. Apart from these two proposals, we have the OWL-S language as a part of the emerging Semantic Web, so its success is closely related to the consolidation of this framework worldwide in the future, which is not clear now.

As we can see in [4], some people think that the reason because none of the choreography standardization efforts has been adopted by a wide user base is that Service-Oriented Architectures (SOA) has not gained enough maturity until now. They think that some issues have to be solved
before we reach the adoption of a SOA infrastructure that integrates choreography (the identification of patterns for service interactions, the definition of a service interaction meta-model, . . .). However, the current choreography languages can be seen as a starting point to reach these goals. E.g., the elements of a service interaction meta-model will be very similar to the elements we have in WS-CDL.

Timing restrictions are used very often in the composition of Web Services, being a critical issue in real-time systems. For example, we want to indicate the amount of time we wait for the confirmation of a purchase order. In WS-CDL and WSCI time constraints can be specified by using the timeout element and the timeout event, respectively, but the specification of OWL-S says nothing about these restrictions. Nevertheless, several efforts have been devoted to extend OWL-S with a time ontology [5, 6].

The use of a formal language to describe a Web Service choreography facilitates the validation of compositions by applying validation techniques already defined for this formalism. Only WS-CDL of the three languages we are comparing is based on a formal language (π-calculus) [7], but there is not a clear translation from all the elements of WS-CDL into π-calculus, so we cannot apply any validation technique directly. The scientific community has developed multiple translations of these three languages into different formal representations [8, 9, 10]. However, all these proposals only take into account a subset of the elements of each language, so they cannot guarantee full correctness of the given specifications.

Concerning the relation with other standards, these three choreography languages are XML-based and can work together with the WSDL language, using this well-established standard to describe the Web Services participating in the composition. WS-CDL and WSCI do not cover the description and execution of the workflow corresponding to each service in the composition, so we are free to use different mechanisms for each one of these services, such as WSFL and WS-BPEL. On the other hand, OWL-S intends to cover this work and extensions like OWL-WS (OWL for Workflow and Services, [11]) has been developed for that purpose. Finally, we also have to take into account that OWL-S builds on OWL (Ontology Web Language), so it makes use of some of the ontologies defined by this language.

Table 1. Equivalences between complex structures

<table>
<thead>
<tr>
<th>WSCI</th>
<th>WS-CDL</th>
<th>OWL-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence</td>
<td>sequence</td>
<td>Sequence</td>
</tr>
<tr>
<td>choice (events)</td>
<td>choice (non-observable)</td>
<td>Choice (non-observable)</td>
</tr>
<tr>
<td>all (concurrent or unspecified order)</td>
<td>parallel (concurrent)</td>
<td>Split, Split+Join, and Any-Order</td>
</tr>
<tr>
<td>switch</td>
<td>Multiple workunits with guard conditions</td>
<td>If-Then-Else</td>
</tr>
<tr>
<td>Until</td>
<td>workunit with repeat condition</td>
<td>Repeat-Until</td>
</tr>
<tr>
<td>While</td>
<td>workunit with guard and repeat conditions</td>
<td>Repeat-While</td>
</tr>
<tr>
<td>foreach</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

1. A. Arkin et al. Web Service Choreography Interface (WSCI) 1.0. http://www.w3.org/TR/wsci/.