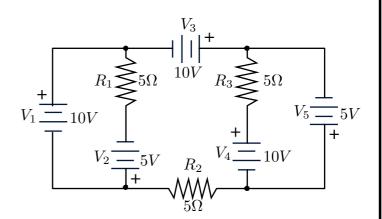


Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado

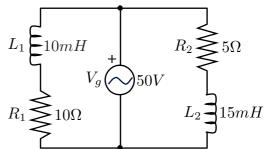
Materia: ELECTROTECNIA


Se debe responder completamente a una de las dos propuestas, para lo cual se puede utilizar cualquier tipo de calculadora (incluido programable).

PROPUESTA A

Problema 1 (3pts)

En el circuito de la figura, determinar:


- a) La intensidad que circula por cada una de las resistencias. (1.5pts)
- b) La potencia en los generadores V₁, V₃ y V₄, indicando si se genera o se consume. (0.75pts)
- c) La potencia disipada por las resistencias. (0.75pts)

Problema 2 (3pts)

Considerando que el generador de tensión V_g de la figura presenta una frecuencia de 50Hz y un desfase inicial φ =0°, calcular:

- a) La impedancia equivalente vista por el generador.(0.5pts)
- b) La tensión que cae en L₁ y L₂. (1pto)
- c) El valor del condensador a colocar en paralelo con V_g para cancelar toda la potencia reactiva del circuito. (1.5pts)

Problema 3 (2pts)

A una red trifásica de tensión de línea de 400V y frecuencia de 50Hz se conecta un receptor en triángulo, compuesto en cada rama por una resistencia de 5Ω y una bobina en serie de 20mH. Calcular las potencias activa y reactiva generadas por dicho receptor **(1.5pts)**, así como el módulo de la corriente de línea. **(0.5pts)**.

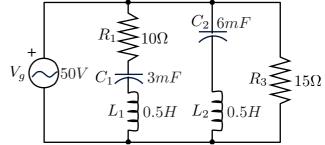
Problema 4 (2pts)

Un motor de corriente continua con excitación en derivación se conecta a una línea de 180V, absorbiendo 25A para producir una potencia de 6 CV en el eje a una velocidad de 1500rpm. Sabiendo que la resistencia del inducido es R_i =0.5 Ω y la de excitación R_{ex} =180 Ω , determinar el rendimiento (0.5pts), el par motor (0.5pts) y la fuerza contraelectromotriz (1pto).

PROPUESTA B

Problema 1 (3pts)

En el circuito de la figura, calcular:


- a) La intensidad que circula por R₂, R₄ y R₅. **(1.5pts)**
- b) La potencia en los generadores, indicando si se genera o se consume.
 (1pto)
- c) La potencia disipada por las resistencias R₃ y R₆.
 (0.5pts)

Problema 2 (3pts)

Considerando que el generador V_g de la figura presenta una frecuencia angular ω =15 rad/s y un desfase inicial φ =0°, calcular:

- a) La impedancia equivalente vista por el generador. (0.5pts)
- b) La tensión que cae en C₁ y L₂. (1pto)
- c) Las potencias activa y reactiva consumidas por R₁, C₂ y R₃. **(1.5pts)**

Problema 3 (2.5pts)

A una red trifásica de tensión de línea de 400V y frecuencia de 50Hz se conectan dos receptores, tal que el primero consume 10KW con un factor de potencia inductivo de 0.75 y el segundo 3KW con una factor de potencia capacitivo de 0.85. Determinar las potencias activa y reactiva totales (1.5pts), así como la capacidad de cada condensador de la batería de condensadores, a conectar en estrella, para mejorar el factor de potencia a 1 (1pto).

Problema 4 (1.5pts)

Un motor trifásico de inducción con 2 pares de polos, funcionando a 50Hz, tiene un deslizamiento del 5% cuando se conecta a una línea de 380V y absorbe una potencia de 20kW. Determinar la velocidad de giro del eje (0.75pts), así como su par útil considerando que el rendimiento es del 90% (0.75pts).